Abstract

Laminar and turbulent mixed convection heat transfer of water/Cu nanofluids in a rectangular shallow cavity was studied utilizing a two-phase mixture model. The upper movable lid of the cavity was at a lower temperature compared to the bottom wall. Simulations were performed for Grashof numbers of 105 (laminar flow) and 1010 (turbulent flow) for Richardson numbers from 0.03 to 30, and nanoparticle volume fractions of 0.00–0.04. The two-dimensional governing equations were discretized using a finite volume method. The effects of nanoparticle concentration, shear and buoyancy forces, and turbulence on flow and thermal behavior of nanofluid flow were studied. The model predictions for very low solid volume fraction (φ ≈ 0) were found to be in good agreement with earlier numerical studies for a base fluid. It is shown that for specific Grashof (Gr) and Richardson (Ri) numbers, increasing the volume fraction of nanoparticles enhances the convective heat transfer coefficient and consequently the Nusselt number (Nu) while having a negligible effect on the wall shear stress and the corresponding skin friction factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.