Abstract
Nanocrystalline materials were investigated by perturbed γγ-angular correlation using the radioactive probe In. For identifying local structures observed by perturbed γγ-angular correlation various supplementing experimental techniques, like X-ray diffraction, transmission electron microscopy, absorption spectroscopy, and photoluminescence spectroscopy, were applied. In nanocrystalline TiAl alloys different crystallographic structures were observed depending on the conditions of sample treatment. Nanocrystalline Ni samples show a slightly modified local magnetic field in regions adjacent to the grain boundaries. In addition, ordered grain boundary structures were observed. Ni precipitates were identified in nanocrystalline NiCu alloys by perturbed γγ-angular correlation and preparation conditions avoiding these precipitates were found. For nanocrystalline ZnO preparation conditions were found yielding In-doped particles of good crystalline quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.