Abstract
In 21th century, rechargeable batteries are main key of modern technology in many applications from portable devices (smartphone, laptop) to large-scale (hydride electric vehicle-HEV, smart grid system). Among the rechargeable batteries, Li-ion battery (LIB) is outstanding member due to the highest gravimetric as well as volumetric capacity; and Sodium-ion batteries (SIBs) can have contribution to alternating LIBs in large-scale application. Li-ion and Na-ion batteries have the same configuration with an insertion/extraction reversible of Li+ ions and Na+ ions into electrode positive and negative during charge-discharge process. This work aimed to investigate Na-immigration into olivine LiFePO4. The olivine phase LiFePO4 was prepared by hydrothermal process. The synthesized LiFePO4 was characterized the structure, morphology and electrochemical properties. The XRD pattern showed the high crystalline and, the Rietveld refinement with X2 = 2.32% confirmed the highly pure olivine phase without impurity. The SEM images exhibited the uniform and good distribution of synthesized olivine in submicrometric scale. The delithiated phase FePO4 was prepared by electrochemical oxidation at low rate C/20. The charge-discharge curves demonstrated the reversible Na-immigration into olivine host with a highest capacity of 80 mAh/g, the cyclability was found out in 73 mAh/g upon 30 cycles. The ex-situ XRD (electrode after electrochemical oxidation, electrode after Na-insertion) revealed the stability of FePO4 framework during Na-immigration.
Highlights
Li-ion and Na-ion batteries have the same configuration with an insertion
The olivine phase LiFePO4 was prepared by hydrothermal process
The delithiated phase FePO4 was prepared by electrochemical oxidation at low rate C/20
Summary
Vật liệu LiFePO4 đang thu hút rất nhiều sự chú ý của các nhà nghiên cứu và sản xuất pin sạc Li-ion bởi vì chi phí thấp cũng như ít độc hại gây tác hại đeˆn môi trường [1,2]. Để khắc phục các nhược điểm trên, những nghiên cứu tập trung vào tổng hợp vật liệu có cấu trúc nano bằng phương pháp dung dịch, thủy nhiệt hay sol-gel [5,6,7], tạo lớp phủ carbon (carbon-coating) bao quanh các hạt LiFePO4 8, cũng như phối trộn carbon nanotubes (CNTs) 9 vào vật liệu điện cực để cải thiện khả năng dẫn điện cũng như tăng tốc độ khueˆch tán ion Li+, từ đó nâng cao dung lượng thực teˆ của vật liệu 10. Tính chất điện hóa của vật liệu LiFePO4 đặc trưng bởi khả năng đan cài-phóng thích ion Li+ tương ứng với quá trình oxy hóa khử của cặp Fe3+/Fe2+ tại vùng theˆ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Science and Technology Development Journal - Natural Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.