Abstract

Nuclear scattering is a very important physical phenomenon in which the resonance state plays an important role. In order to study the two-body system n-α scattering, Green’s function is introduced under the complex momentum representation, so the complex momentum representation-Green’s function approach is established. This method is used to study the elastic scattering of n-α system. By extracting the resonances, it is found that the contributions of resonances in continuum level density, phase shift, and cross section are more important. In the case without introducing any non-physical parameters, it is very helpful to understand the resonant states and the non-resonance continuum states by analyzing the data of scattering states. In this work, we mainly study the p-wave scattering with the orbital angular momentum <i>l</i> = 1, where P<sub>1/2</sub> is a wide resonance state and P<sub>3/2</sub> is narrow resonance state. The study shows that the sharp resonance peak of p-wave scattering gives rather broad distribution to the scattering phase shift and the cross section of the n-α system. By comparison, we can see that the theoretical calculation results and experimental data are in good consistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.