Abstract

The UnaG protein is a ligand (unconjugated bilirubin) dependent fluorescence protein isolated from Unagi freshwater eel larvae and expressed as fusion in heterologous expression systems. Bilirubin is a tetrapyrrole molecule mainly produced from heme catabolism by the destruction of erythrocytes in the body. Bilirubin can cause kernicterus, a serious condition associated with permanent neurological damage in neonates with the passage of brain tissue. Different methods have been developed for plasma bilirubin analysis and quantification. The use of UnaG fluorescence protein triggered by bilirubin has become a new approach in bilirubin studies. In this study, we aimed to investigate the biophysical characterization of ligand interactions with the proteins obtained as a result of mutations (UnaGY99F_Y134W, UnaGN57E, UnaGL41F, and UnaGF17M) on the amino acid sequence of TolAIII-UnaG protein. After the purity levels of the expressed proteins have been analyzed by SDS-PAGE, secondary structures and thermal melting temperatures of the proteins have been examined by circular dichroism spectroscopy. Then determination of excitation and emission points by fluorescence spectroscopy, titration studies have been performed with bilirubin, and dissociation constant was calculated. According to the biophysical characterization studies, UnaGL41F has the highest affinity and stability among the mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.