Abstract

An improved virtual orbital complete active space configuration interaction reference function-based multireference Brillouin-Wigner perturbation approach (IVO-BWMRPT) that avoids the numerical divergence because of the intruder problem by focusing on obtaining a single root of the many-body Hamiltonian is used to compute dissociation energy surfaces and spectroscopic constants of C2, N2, and CN radicals. For such correlated molecules, the computational demand to delineate the wavefunction exactly is quite challenging. The IVO-BWMRPT method, a convenient and effective way to handle quasidegenerate situations, accurately captures different correlations and is capable of treating the variation of multiconfigurational nature of wave functions that occur during the multiple-bond breaking processes. Spectroscopic constants extracted from the computed surface are in good agreement with experimental or benchmark results, indicating that the components of the IVO-BWMRPT scheme must perform in harmony for providing a well-behaved and consistent description of all computed bond lengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call