Abstract

A novel asymmetric all-dielectric metasurface supporting multiple Fano resonances with high quality-factor through the excitation of quasi-bound states in the continuum is theoretically investigated. It is demonstrated that two resonances in the near-infrared wavelength are excited by the symmetry-protected bound state in the continuum, which can be transformed into the electric dipole and the toroidal dipole quasi-BIC resonance with high quality-factor by breaking the symmetry of metasurface. Moreover, the sensing properties based on different liquid refractive indexes are researched theoretically. The results show that the maximum quality-factor of the Fano resonance peak is 8422, and the sensitivity can reach 402 nm/RIU, with a maximum figure of merit of 2400 RIU−1. This research is believed to further promote the development of optical sensing and nonlinear optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call