Abstract

We develop an original phase-coupled method to realize multispectral metamaterial near-unity absorbers based on spatially separated graphene ribbon arrays with mid-infrared plasmonic resonances. The results both from the coupled-mode theory and finite-difference time-domain simulations reveal that in addition to the single-band absorption enabled by the bi-layer identical ribbon arrays, the outstanding dual-band perfect absorption is observed with the change in the phase between bi-layer ribbons only by varying the spacer thickness. The spectral positions of absorption peaks are tuned handily by small changes in ribbon widths and chemical potentials of graphene. Moreover, the triple-band absorber is achieved handily by the same principle and such absorbers are robust for nor-normal incident angles. The transfer matrix method is also utilized to uncover further the underlying physics of the phased-coupled-induced multispectral absorbers. Theoretical analysis are in excellent agreement with numerical calculations. The phase-coupled method thus provides new opportunities for obtaining multi-channel metamaterial perfect absorbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.