Abstract

The aim of present study was to develop an oxybutynin (OXY) transdermal patch with good permeation behavior and mechanical property. Special attention was paid to the effect of chemical enhancer on the molecular mobility of pressure sensitive adhesive (PSA) at molecular level. PSAs and permeation enhancers were investigated through in vitro experiment using rat skin. The optimized formulation was evaluated through pharmacokinetic study using rat. In addition, the molecular mechanism of sorbitan monooleate (Span® 80) in the improvement of PSA molecular mobility was investigated using FT-IR, molecular dynamics simulation, DSC and rheological study. As a result, the optimized formulation using amide PSA demonstrated good adhesion property. And the AUC0-t and Cmax of optimized patch were 6435.8 ± 747.8 h ∗ ng/mL and 127.8 ± 18.0 ng/mL, respectively, which had no significant difference with commercial product. Furthermore, the improvement of the PSA mobility by Span® 80 rather than the decrease of interaction between drug and PSA was the main factor that enhanced the release of OXY from patch. In conclusion, a drug-in-adhesive OXY patch was developed, and the effect of PSA molecular mobility increase on the enhancement of drug skin permeation was proposed at molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.