Abstract

A set of Safety Performance Function (SPFs) commonly known as accident prediction models, were developed for evaluating the safety of Highway segments under the jurisdiction of Ministry of Transportation, Ontario (MTO). A generalized linear modeling approach was used in which negative binomial regression models were delevoped separately for total accidents and for three severity types (Property Damage Only accidents, Fatal and Injury accidents) as a function of traffic volume AADT. The SPFs were calibrated from 100m homogenous segments as well as for variable length continuous segments that are homogeneous with respect to measured traffic and geometric characteristics. For the models calibrated for Rural 2-Lane Kings Highways, the variables that had significant effects on accident occurrence were the terrain, shoulder width and segment lenght. It was observed that the disperson parameter of the negative binomial districution is large for 100m segments and smaller for longer segments. Further investigation of the dispersion parameter for Rural 2-Lane Kings Highways showed that the models calibrated with a separate dispersion parameter for each site depending on the segment length performed better that the model calibrated considering fixed dispersion parameter for all sites. For Rural 2-Lane Kings Highways, a model was calibrated with trend considering each year as a separate observation. The GEE (Generalized Estimating Equation) procedure was use to develop these models since it incorporated the temporal correlation that exists in repeated measurements. Results showed that integration of time trend and temporal correlation in the model improves the model fit.

Highlights

  • This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by an authorized administrator of Digital Commons @ Ryerson

  • I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research

  • It was observed that the dispersion parameter of the negative binomial distribution is large for 100m segments and smaller for longer segments

Read more

Summary

Introduction

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations Part of the Civil Engineering Commons S.M. Morjina Ara, "Investigation of model calibration issues in the safety performance assessment of Ontario highways" (2008). This Thesis is brought to you for free and open access by Digital Commons @ Ryerson.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.