Abstract

Advancing our understanding of the defect formation mechanism in metal–organic frameworks (MOFs) is critical for the rational design of the material’s structure. In particular, the defects in the UiO-66 framework have been shown to have a significant impact on the framework functionality and stability. However, the effects of synthesis conditions on defect formation are elusive and our understanding of missing-ligand and missing-cluster defects in UiO-66 is far from clear. In this work, we demonstrate that the formation of missing-cluster (MC) defects is due to the large number of partially deprotonated ligands in synthesis solution. The proposed mechanism is verified by a series of syntheses controlling the defect formation. The results show that the quantity of MC defects is sensitive to deprotonation reagents, synthesis temperature, and reactant concentration. The pore size distribution derived from the N2 adsorption isotherm at 77 K allows accurate and convenient characterization of the defects in UiO...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.