Abstract
In this paper we present a detailed theoretical investigation of second harmonic generation in strained germanium waveguides operating at the mid infrared pump wavelength of 4 μm. The effective second order susceptibility has been estimated through a multiphysics approach considering the residual stress of the SiNx cladding film. Furthermore, general physical features have been investigated by means of a comparative analysis of SHG performance as a function of input pump power, linear and nonlinear phase mismatching, effective recombination carrier lifetime, and temperature, taking into account both continuous and pulsed regimes. Finally, periodically poled germanium devices have been explored with the aim to improve the SHG efficiency. In the same operative conditions, efficiencies of 0.6% and 0.0018% have been obtained in poled and not-poled waveguides, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.