Abstract
Graphene interacts with electromagnetic waves strongly in a wide range from ultra-violet to far-infrared, making the graphene coating suitable for a variety of applications. In this study, a novel localized rapid heating technique utilizing micro-patterned silicon stampers with carbide-bonded graphene coating, which directly heats up by absorbing mid-infrared light radiation, is implemented in rapid precision optical molding. The graphene network, as a functional coating to obtain thermal energy and improve the anti-adhesion of the mold surface, can heat up the mold surface rapidly (up to 18.16 K/s) and evenly above glass transition temperature over a large area within several seconds. Since the graphene coating was around tens of nanometers (∼45 nm) thick, the rapid precision surface molding process can be shortened into tens of seconds. Furthermore, the thermal response and repeatability of the graphene coated silicon wafer is investigated by repeated thermal cycling. This novel rapid precision surface molding technique is successfully tested to replicate grating structures and periodic patterns from silicon molds to thermoplastic substrates with high accuracy. Compared with conventional methods, this new approach can achieve much higher replication fidelity with a shorter cycle time and lower energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.