Abstract

Al-Zn-Mg-Cu aluminum alloys have the advantages of high specific strength, easy processing, and high toughness, showing great potential application in the aerospace field. However, ultra-high strength aluminum alloys usually contain coarse microstructures, micro-segregation, and casting defects that seriously deteriorate mechanical properties. Here, we report a high-strength aluminum alloy (Al-10.5Zn-2.0Mg-1.2Cu-0.12Zr-0.1Er) prepared by rapid solidification and hot extrusion to explore the microstructure modification of the alloy based on this strategy. The results show that: rapid-solidification technology can significantly refine alloy grains, alloy ribbons were composed of α (Al) equiaxed fine grains, and the average grain size was less than 6 μm. After extrusion, the alloy had partially recrystallized, existing coarse second-phase (T-phase) and needle-shaped precipitates were MgZn2 (η-phase), and the tensile strength and elongation of the extruded bar were 466.4 MPa and 12.9%, respectively. After T6 heat treatment, the tensile strength of the alloy reached 635.8 MPa, while elongation decreased to 10.5%. According to microstructure analysis and considering the contributions of grain boundary, dislocation, and precipitation-strengthening to the improvement of the mechanical properties, it was found that precipitation-strengthening is the main strengthening mechanism. Our research shows that rapid-solidification and hot-extrusion technology have great potential for improving the microstructures and mechanical properties of aluminum alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.