Abstract

This work investigates the effects of small additions (0.05 and 0.1wt.%) of Ni on the microstructure and mechanical properties of low Ag content Sn–0.5Ag–0.7Cu (SAC (0507)) lead-free solder alloy. The addition of 0.05Ni resulted in the microstructural refinement, uniform distribution of the Ag3Sn and (Cu,Ni)6Sn5 intermetallic compounds (IMCs) and small primary β-Sn grains. This apparently enhances the mechanical strength and microhardness. However, the addition of 0.1Ni leads to the formation of relatively high fraction of the primary β-Sn phase and the IMCs appeared abrasive within the matrix. As a result, the SAC (0507)–0.1Ni solder exhibits low tensile strength, microhardness and large elongation, which produce a soft and highly compliant bulk solder. In addition, the strength of all studied alloys increases with increasing strain rate and decreasing testing temperature, showing strong strain rate and temperature dependence. Based on the obtained stress exponents and activation energies, it is proposed that the dominant deformation mechanism in SAC (0507) solders is dislocation climb over the whole temperature range investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call