Abstract

This study aimed to (1) investigate microrubbers (MRs) for the first time and identify microplastics (MPs) in street dust, (2) determine the physicochemical and mineralogical characteristics and morphology of dust particles, (3) understand the concentration and the possible source(s) of heavy metals/metalloids, (4) identify the chemical speciation and mobility potential of trace metals in urban street dusts, and (5) determine adverse health effects of street dust on children and adults living in the city of Bushehr in southwestern Iran. Generally, twenty four street dust samples were collected and analyzed. Calculated enrichment factors indicate high levels of contamination. Statistical analysis reveals that the two main sources of trace elements include road traffic emissions (Cu, Zn, Sb, Hg, Pb, Mo) and re-suspended soil particles (Al, Mn, Ni, Ti, Cd, Co). BCR sequential extraction results indicated that As, Zn, Cu, and Pb mainly occur in the exchangeable fraction and hence are highly bioavailable. X-ray powder diffraction analysis revealed the presence of calcite, dolomite, quartz, and magnetite. The size distribution of dust particles was also investigated using a scanning electron microscope (SEM), while elemental distribution was analyzed using an attached energy dispersive X-ray spectrometer (SEM–EDS) unit. Dust particles from heavy traffic areas are much finer compared with other investigated areas. MPs and MRs, mostly fibers and fragments, were detected in all samples [ranging from 210 to 1658 (MPs) and 44 to 782 (MRs) items/10 g dust] using fluorescence microscopy. The hazard index for As is higher than 10−4 for children and adults indicative of high risk. According to the calculated potential ecological risk index, Hg indicated moderate ecological risk in the street dust of the study area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.