Abstract

PurposeThe purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include water, ethylene glycol and ethylene glycol/water (50%–50%). Also, a nanoparticle was used in all of the base fluids. The effects of natural convection heat transfer and magnetic field have been taken into account.Design/methodology/approachThe main purpose of solving the governing equations is to scrutinize the effects of the magnetic parameter, the nanoparticle volume fraction, micropolar parameter and nanoparticles shape factor on velocity, temperature and microrotation profiles, the skin friction coefficient and the Nusselt number. These surveys have been considered for three base fluids simultaneously.FindingsThe results indicate that for water-based fluids, the temperature profile of lamina-shaped nanoparticles is 38.09% higher than brick-shaped nanoparticles.Originality/valueThis paper provides micropolar MHD fluid flow analysis considering natural convection heat transfer and magnetic field in three different base fluids. The aim of assessments is the diagnosis of some parameter effects, such as magnetic parameter and nanoparticle volume fraction, on velocity, temperature and microrotation profiles and components. Also, the use of mixed base fluids presented as a novelty in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call