Abstract

Microbial fuel cells (MFCs) are a self-sustaining and environmentally friendly system for the simultaneous was tewater treatment and bioelectricity generation. The type and material of the electrode are critical factors that can influence the efficiency of this treatment process. In this study, graphite plates and carbon felt were modified through the electrodeposition of nickel followed by the formation of a biofilm, resulting in conductive bio-anode thin film electrodes with enhanced power generation capacity. The structural and morphological properties of the electrode surfaces were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, and field-emission scanning electron microscopy techniques. Maximum voltage, current density, and power generation were investigated using a dual-chamber MFC equipped with a Nafion 117 membrane and bio-nickel-doped carbon felt (bio-Ni@CF) and bio-nickel-doped graphite plate (bio-Ni@GP) electrodes under constant temperature conditions. The polarization and power curves obtained using different anode electrodes revealed that the maximum voltage, power and current density achieved with the bio-Ni@CF electrode were 468.0 mV, 130.72 mW/m2 and 760.0 mA/m2 respectively. Moreover, the modified electrodes demonstrated appropriate stability and resistance during successful runs. These results suggest that nickel-doped carbon-based electrodes can serve as suitable and stable supported catalysts and conductors for improving efficiency and increasing power generation in MFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call