Abstract

Pimavanserin, a selective serotonin 2A receptor inverse agonist, is a promising candidate for treating Parkinson's disease psychosis. Our previous study revealed that there might be the presence of extensive metabolites of pimavanserin in rats. However, the metabolic fate of pimavanserin in vivo remains unknown. Thus, it is essential to develop an efficient method to investigate the metabolic profile of pimavanserin in rats. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to date has the highest mass measurement accuracy and resolution of any mass spectrometry platform. After a single intragastric administration of pimavanserin at a dose of 50mg kg-1 , plasma, bile, urine and feces were collected from rats. A novel and efficient strategy was developed to analyze the metabolic profile of pimavanserin in vivo based on ultrahigh-performance liquid chromatography (UHPLC) coupled with FT-ICR-MS. A total of 23 metabolites were detected and tentatively identified through comparing their mass spectrometry profiles with those of pimavanserin. These metabolites were found in feces (22), bile (21), rat urine (16) and plasma (15). Results demonstrated that metabolic pathways of pimavanserin in rats included dehydrogenation, demethylation, deethylation, depropylation, debutylation, hydroxylation, dihydroxylation and trihydroxylation. A total of 22 phase I metabolites of pimavanserin were detected and tentatively identified. This report presents the first study of screening and identification of the metabolites of pimavanserin. The UHPLC/FT-ICR-MS method is a powerful tool for exploring and identifying metabolites in complex biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.