Abstract
This paper presents the design of a dynamic chamber system that allows full transmission of PAR and UV radiation and permits enclosed intact foliage to maintain normal physiological function while Hg(0) flux rates are quantified in the field. Black spruce and jack pine foliage both emitted and absorbed Hg(0), exhibiting compensation points near atmospheric Hg(0) concentrations of approximately 2-3 ng m(-3). Using enriched stable Hg isotope spikes, patterns of spike Hg(ll) retention on foliage were investigated. Hg(0) evasion rates from foliage were simultaneously measured using the chamber to determine if the decline of foliar spike Hg(II) concentrations over time could be explained by the photoreduction and re-emission of spike Hg to the atmosphere. This mass balance approach suggested that spike Hg(0) fluxes alone could not account for the measured decrease in spike Hg(II) on foliage following application, implying that eitherthe chamber underestimates the true photoreduction of Hg(ll) to Hg(0) on foliage, or other mechanisms of Hg(II) loss from foliage, such as cuticle weathering, are in effect. The radiation spectrum responsible for the photoreduction of newly deposited Hg(II) on foliage was also investigated. Our spike experiments suggest that some of the Hg(ll) in wet deposition retained by the forest canopy may be rapidly photoreduced to Hg(0) and re-emitted back to the atmosphere, while another portion may be retained by foliage at the end of the growing season, with some being deposited in litterfall. This finding has implications for the estimation of Hg dry deposition based on throughfall and litterfall fluxes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.