Abstract

In this experiment, copper-base composites reinforced with 30nm and 5μm SiC particles are fabricated on the surface of a purecopper sheetvia friction stir processing (FSP). Microstructure, mechanical properties and wear resistance of friction stir processed (FSPed) materials are investigated as a function of volume fraction of SiC particles. Results show that, applying FSP, without SiC particles, increases the percent elongation significantly (more than 2.5 times) and decreases copper's strength. Adding micro- and nano-sized SiC particles decreases the tensile strength and percent elongation. Increasing the volume fraction or decreasing the reinforcing particle size enhances the tensile strength and wear resistance and lowers the percent elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.