Abstract

This research aims to investigate the application of the hot pressing (HP) sintering process in the fabrication of W-B-Fe-Cr-C advanced shielding materials and analyze the relationship between their microstructure and mechanical properties. The findings reveal that the HP sintering process can effectively produce reactive sintered boride (RSB) materials with high density and engineering application size. The results indicate that the residual stress in RSB-HP improves its bending strength to some extent. Residual stress and granular structure are both related to phase aggregation during sintering. Microstructural analysis has unveiled the granular organizational characteristics and the pathways of crack propagation within the RSB-HP. These discoveries hold significant importance for comprehending the potential of the HP sintering process in the context of nuclear fusion shielding material preparation and provide a scientific foundation for further optimizing the sintering process and performance of RSB materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call