Abstract

The SIMBATH out-of-pile experiments simulate severe accidents in fast breeder reactors. In the tests the nuclear energy released is substituted by the exothermal energy of a thermite reaction. Single pin and small bundle experiments as well as freezing tests are performed. Material ejected from the fuel rod simulators in an early phase is finely dispersed. A portion penetrates the upper breeding zone without freezing. The bulk of molten material ejected afterwards leads to blockages in the colder zones of the bundle. Under these conditions bottled-up situations may occur in the SIMBATH experiments. Residual sodium may become entrapped. The current version of the computer code CALIPSO developed to interpret these experiments is verified by calculation of two single pin experiments. The computations show that the relocation mechanisms in the SIMBATH experiments are mainly controlled by expansion of noncondensible gases originally existing inside the pins. The contribution from fuel vapour pressure or from sodium evaporation due to fuel-coolant-interaction is of less importance during the first 100 ms after fuel pin failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.