Abstract

A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction and number density. The model describes particle nucleation, surface growth, and oxidation. A detailed kinetic mechanism is considered for the gas phase and the effect of considering radiation heat losses is also evaluated. Simulations were done for a range of conditions that produce low-to-significant amounts of soot using three strategies: first by changing the strain rate imposed on the flow field, second, by changing the oxygen content in the oxidant stream, and third, by changing the pressure. Additionally, the effect of the transport model chosen was analysed. The results showed that, for the flames studied and within the limits of the present work, the soot and gas radiation terms are of primary importance for numerical simulations. Additionally, it was shown that the soot mass and thermodynamic properties coupling terms are, in general, a second-order effect, with an importance that increases as soot amount increases. As a general recommendation, the radiation terms have always to be considered, whereas full coupling has to be employed only when the soot mass fraction, YS, is equal to or larger than 0.008. If a higher precision is required, with errors less than 1%, full coupling should be taken into account for YS ≥ 0.002. For lower soot amounts, the coupling through soot mass and thermodynamic properties may be neglected as a first approximation, but an error on the total mass conservation will be present. Additionally, discrepancies from considering different transport models (detailed or simplified) are larger than those found from not fully coupling the phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.