Abstract

Target preheating is an integral component of magnetized inertial fusion in reducing convergence ratio. In the staged Z-pinch concept, it is achieved via one or more shocks. Previous work [Narkis et al., Phys. Plasmas 23, 122706 (2016)] found that shock formation in the target occurred earlier in higher-Z liners due to faster flux transport to the target/liner interface. However, a corresponding increase in magnitude of magnetic pressure was not observed, and target implosion velocity (and therefore shock strength) remained unchanged. To investigate other means of increasing the magnitude of transported flux, a Korteweg-de Vries-Burgers equation from the 1-D single-fluid, resistive magnetohydrodynamic equations is obtained. Solutions to the nondispersive (i.e., Burgers) equation depend on nondimensional coefficients, whose dependence on liner density, temperature, etc., suggests an increase in target implosion velocity, and therefore shock strength, can be obtained by tailoring the mass of a single-liner gas puff to a double-liner configuration. In the selected test cases of 1-D simulated implosions of krypton on deuterium, the peak Mach number increased from ∼5 to ∼8. While a notable increase was seen, Mach numbers exceeding 10 (implosion velocities exceeding ∼25 cm/μs) are necessary for adequate shock preheating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.