Abstract
This study investigated alternative, non-invasive methods for human papillomavirus (HPV) detection in head and neck cancers (HNCs). We compared two approaches: analyzing computed tomography (CT) scans with a Deep Learning (DL) model and using radiomic features extracted from CT images with machine learning (ML) models. Fifty patients with histologically confirmed HNC were included. We first trained a modified ResNet-18 DL model on CT data to predict HPV status. Next, radiomic features were extracted from manually segmented regions of interest near the oropharynx and used to train four ML models (K-Nearest Neighbors, logistic regression, decision tree, random forest) for the same purpose. The CT-based model achieved the highest accuracy (90%) in classifying HPV status. Among the ML models, K-Nearest Neighbors performed best (80% accuracy). Weighted Ensemble methods combining the CT-based model with each ML model resulted in moderate accuracy improvements (70-90%). Our findings suggest that CT scans analyzed by DL models hold promise for non-invasive HPV detection in HNC. Radiomic features, while less accurate in this study, offer a complementary approach. Future research should explore larger datasets and investigate the potential of combining DL and radiomic techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.