Abstract

Lubricant transfer and distribution at the head/disk interface in air-helium gas mixtures is investigated using a developed model that combines an air-bearing model with a molecular dynamics model. The pressure distribution is calculated by the air-bearing model at the head/disk interface with respect to the helium content and the pressure obtained is then input to the molecular dynamics model to understand the lubricant transfer mechanism. Finally, the effects of pressure at the boundary condition and disk velocity on lubricant transfer are discussed in relation to the helium fraction within the air-helium gas mixtures. Results show there is a decrease in the pressure difference with an increase in the helium percentage, which leads to a decrease in the volume of the lubricant transferred. The results also suggest that the lubricant is not easily to transfer in gas mixtures with a high percentage of helium, even when both higher disk velocities and pressure boundary conditions are applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call