Abstract

In this era of communication technology, it is desirable to increase the data rate while minimizing the error to improve the system’s reliability. One of these techniques is massive multiple-input multiple-output (mMIMO), which increases the spectral efficiency by providing the data to multiple users simultaneously through spatial multiplexing. The mMIMO system processes the received signal by prior estimation of the channel, which has a finite variance leading to imperfect channel state information (ICSI) at the receiver. In the fifth-generation technology, spectral efficiency using mMIMO may decrease as the number of subscribers increases, resulting in more interference and affecting system capacity. The ICSI provides another challenge, as the processed data at the receiver’s output may now be more erroneous. Thus, this article provides an insight into the impact of an increase in the number of users on the variation in bit error rate with the signal-to-noise ratio in multi-user mMIMO (MU-mMIMO) and low-density parity check (LDPC) codes concatenated MU-mMIMO systems having ICSI at the receiver for quadrature amplitude modulation (QAM) and 16-QAM as modulation techniques. It has been shown that the performance of the concatenated scheme outperforms the conventional mMIMO system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call