Abstract

The electrical conduction mechanisms in various highly resistive GaN layers of Al x Ga1−x N/AlN/GaN/AlN heterostructures are investigated in a temperature range between T=40 K and 185 K. Temperature-dependent conductivities of the bulk GaN layers are extracted from Hall measurements with implementing simple parallel conduction extraction method (SPCEM). It is observed that the resistivity (ρ) increases with decreasing carrier density in the insulating side of the metal–insulator transition for highly resistive GaN layers. Then the conduction mechanism of highly resistive GaN layers changes from an activated conduction to variable range hopping conduction (VRH). In the studied temperature range, ln (ρ) is proportional to T −1/4 for the insulating sample and proportional to T −1/2 for the more highly insulating sample, indicating that the transport mechanism is due to VRH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.