Abstract
The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel production potential from the CeO2 → CeO2−δ cycle. A maximum value of the non-stoichiometric reduction factor δ of ceria powder was 0.0383 at 1450 °C. The reactive stability of a synthesized porous ceria sample is then observed with carbon dioxide splitting at 1100 °C and thermal reduction at 1450 °C. Approximately 86.4% of initial fuel production is retained after 2000 cycles, and the mean value of δ is found to be 0.0197. SEM (scanning electron microscopy) imaging suggests that the porous ceria structure is retained over 2000 cycles despite apparent loss of some surface area. EDS (energy dispersive x-ray spectroscopy) line scans show that oxidation of porous ceria becomes increasingly homogenous throughout the bulk material over an increasing number of cycles. Significant retention of reactivity and porous structure demonstrates the potential of porous ceria for use in a commercial thermochemical reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.