Abstract

Coronal mass ejections (CME) have an impact on the flux of cosmic rays that penetrate the disturbed areas in the heliosphere and the near-terrestrial space. Unlike most ground-based cosmic ray detectors, the URAGAN muon hodoscope (MEPhI) allows to investigate both the integrated counting rate of registered particles and angular characteristics of the muon flux at the ground level. To select the local areas with statistically significant intensity changes, the angular distributions for the last hour and preceding it 24 hours corrected for the barometric effect are used. Angular distributions are smoothed, and the matrix of relative changes of the angular distribution in units of statistical errors is formed. The use of asymptotic directions calculated in advance, the angular cells of the matrix are mapped from the local coordinate system to the GSE coordinate system. The results of the study of GSE-mapping of local deformations of the angular distributions for different types of CMEs are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.