Abstract

To investigate the effects of loading rate and plate thickness on the fracture toughness of PMMA (polymethyl methacrylate) under impact loading, two methods, A method and B method, are applied as follows. In the A method, a dynamic finite element method and a strain gage method are applied to measure the dynamic fracture toughness in the fracture test using an air gun. In the B method, a single axis strain gage method is applied to measure the critical dynamic stress intensity factor, namely dynamic fracture toughness, in the fracture test using a weight dropping type apparatus. The dimensions of the PMMA specimen are L = 140 mm length and W = 30 mm width. Three values of the plate thickness B, 15.0 mm, 10.0 mm and 5.0 mm, are selected to investigate the plate thickness effect in the fracture test. Both results by the A and B methods precisely indicated the minimum value and the loading rate effect on the dynamic fracture toughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.