Abstract

Four models, standard diffusion approximation (SDA), single Monte Carlo (SMC), delta-P1, and isotropic similarity (ISM), are developed and evaluated as forward calculation tools in the estimation of tissue optical properties. The inverse calculation uses the ratio of the fluences and phase difference at two locations close to an intensity modulated isotropic source to recover the reduced scattering coefficient mus' and the absorption coefficient mua. Diffusion theory allows recovery of optical properties (OPs) within 5% for media with mus'mua>10. The performance of the delta-P1 model is similar to SDA, with limited enhanced accuracy. The collimation approximation may limit the use of the delta-P1 model for spherical geometry, and/or the fluence may not be accurately calculated by this model. The SMC model is the best, recovering OPs within 10% regardless of the albedo. However, the necessary restriction of the searched OPs space is inconvenient. The performance of ISM is similar to that of diffusion theory for media with mus'mua>10, and better for 1<mus'mua<10, i.e., determines absorption within 5% and reduced scattering within 20%. In practice, satisfactory estimates (within 5 to 10%) can be achieved using SDA to recover mus' and ISM to recover mua for media with mus'mua>5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.