Abstract

In this study, the adsorption of benzoic acid and phenols in the aqueous phase by MOF-Cu adsorbent was investigated. A high-performance liquid chromatography (HPLC) device was used to analyze the concentration of contaminants in the solution. Three isotherms, Freundlich, Langmuir, and Temkin were performed for adsorption of Benzoic Acid (BA) and Phenol contaminants. Correlation factor for adsorption isotherms were fitted into Langmuir aqueous BA and Phenol would be 99.89 and 99.98%, respectively. The equilibrium adsorption capacity MOF-Cu of BA and Phenol is 636.73 and 524.42 mg/g, respectively. In this study, high contaminant adsorption with π-π interaction and hydrogen bonding leads to the high capacity of MOFCu. In addition, the increase in adsorption capacity of benzoic acid is due to the electronegative property of oxygen in the carbonyl group and the similarity of the carboxylic acid functional group with the adsorbent. The result shows, that at initial time adsorption, has been a non-linear trend. In addition, the first-order kinetic model is not a suitable option for fitting the experimental data of adsorption kinetics and the adsorption kinetics of BA and Phenol is very well compatible with the semi-second order with the correlation Factor being 99.7 and 99.78, respectively. Also, the equilibrium adsorption capacity in pseudo-second order kinetic for BA and Phenol is 613.5 and 523.56 mg/g respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.