Abstract

In this work we present results of a series of experiments to investigate the origin of the defects causing light and elevated temperature induced degradation (LeTID). It has been demonstrated that LeTID effects can be observed even in high purity monocrystalline silicon. The experiments are therefore performed on float-zone silicon and feature a variety of process schemes to test important hypotheses on LeTID and reproduce them under more defined conditions. Different surface passivation schemes based on aluminium oxide layers are combined with a designated hydrogenation treatment and subjected to different thermal processes on both p- and n-type wafers. The results on p-type wafers confirm several previous observations concerning, e.g., the influence of silicon nitride layers and the firing peak temperature. However, we do not observe a crucial influence of the specific firing temperature profile in the experiment. The investigated n-type wafers do not feature a typical LeTID behaviour but appear to be affected by the LeTID defect nonetheless. Firstly, we observe an improvement of the effective lifetime under LeTID testing conditions that is driven by an improvement of the bulk lifetime. Secondly, identical pattern are observed in lifetime images of n-type wafers directly after firing and of p-type wafers in the degraded state. These findings strongly indicate that LeTID defects can be present in the initial state of n-type wafers after firing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.