Abstract

Filtered backprojection (FBP) algorithms are commonly employed for image reconstruction in optoacoustic tomography (OAT). A limitation of FBP algorithms is that they require the measured acoustic data to be densely sampled, which necessitates expensive ultrasound arrays that possess a large number of elements or increased data-acquisition times if mechnical scanning is employed. Additionally, FBP algorithms are based on idealized imaging models that do not accurately model the response of the transducers and fail to exploit the statistical characteristics of noisy measurement data to minimize noise levels in the reconstructed images. Iterative image reconstruction algorithms can circumvent these difficulties. However, to date, iterative reconstruction algorithms have not been successfully applied to three-dimensional (3D) OAT. In this work we investigate the use of an iterative image reconstruction method in 3D OAT. The large computational burden of 3D iterative image reconstruction is circumvented by implementing the reconstrution algorithm with graphics processing units (GPUs). The ability of the reconstruction algorithm to mitigate artifacts due to incomplete data is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.