Abstract

ABSTRACTCathodoluminescence (CL) Microanalysis (spectroscopy and microscopy) provides unique high sensitivity, high spatial resolution information about the defect structure and distribution of defects in wide band gap materials and therefore is an ideal technique with which to investigate the microstructural processes induced by irradiation. CL microanalytical techniques allow the in situ monitoring and post irradiation assessment of electron irradiation induced damage. Changes in the defect structure and surface topography of electron irradiated silicon dioxide polymorphs and related silicates including pure crystal quartz, pure silica glasses, pure amorphous fused quartz and alkali-borosilicate glasses, have been investigated and compared using CL microanalysis and Scanning Probe Microscopy (SPM) techniques. CL and SPM evidence shows all specimens are sensitive to electron irradiation. CL evidence is consistent with the production and micro-segregation of irradiation induced defects. The observed damage is highly correlated with the electron irradiation induced changes in the surface topography of the investigated specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.