Abstract

A rapid and accurate method of quantifying positional isomeric mixtures of phosphorylated hexose and N-acetylhexosamine monosacchrides by using gas-phase ion/molecule reactions coupled with FT-ICR mass spectrometry is described. Trimethyl borate, the reagent gas, reacts readily with the singly charged negative ions of phosphorylated monosaccharides to form two stable product ions corresponding to the loss of one or two neutral molecules of methanol from the original adduct. Product distribution in the ion/molecule reaction spectra differs significantly for isomers phosphorylated in either the 1- or the 6-position. As a result, the percents of total ion current of these product ions for a mixture of the two isomers vary with its composition. In order to determine the percentage of each isomer in an unknown mixture, a multicomponent quantification method is utilized in which the percents of total ion current of the two product ions for each pure monosaccharide phosphate and the mixture are used in a two-equation, two-unknown system. The applicability of this method is demonstrated by successfully quantifying mock mixtures of four different isomeric pairs: Glucose-1-phosphate and glucose-6-phosphate; mannose-1-phosphate and mannose-6-phosphate; galactose-1-phosphate and galactose-6-phosphate; N-acetylglucosamine-1-phosphate and N-acetylglucosamine-6-phosphate. The effects of mixture concentrations and ion/molecule reaction conditions on the quantification are also discussed. Our results demonstrate that this assay is a fast, sensitive, and robust method to quantify isomeric mixtures of phosphorylated monosaccharides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call