Abstract

New experimental results on the scintillation processes for KBr, YAG:Ce, CaF2:Eu and CsI:Tl crystals under H2+ irradiation for the energy range of 600-2150 keV/u are systematically reported. The scintillation light yield was measured as a function of accumulated particle fluence at the rare isotope ReAccelerator (ReA) facility of the National Superconducting Cyclotron Laboratory (NSCL). The data indicates that YAG:Ce and CsI:Tl can maintain stable luminescence under continuous ion bombardment for at least a total fluence of 1.8×1012 ions/mm2 in the energy range used for this experiment. On the other hand, the luminescence of CaF2:Eu shows a rapid initial decay but then maintains a nearly constant luminescence yield. The extraordinary scintillation response of KBr is initially enhanced under ion bombardment, approaches a maximum, and then eventually decays. The scintillation efficiency of the CsI:Tl scintillator is superior to the other materials. The stability of the measured beam profile width deducted from the different scintillator materials in static beam conditions was also investigated as a function of irradiation time. We observed that the low-energy H2+ bombardment (25 keV/u) on the YAG:Ce scintillator can lead to the significant degradation of the scintillation yields. Different scintillation degradation responses for the low- and high-energy bombardments can be attributed to the transmission loss of the emitted light inside the crystal caused by displacement damages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.