Abstract

The crystal structure of the N,N,N',N'-tetramethylethylenediammonium dithiocyanate salt has been examined by experimental charge density studies from high-resolution X-ray diffraction data. The corresponding results are compared with multipole refinements, using theoretical structure factors obtained from a periodic density functional theory calculation at the B3LYP level with a 6-31G(**) basis set. The salt crystallizes in space group P and contains only a single ion pair with an inversion center in the cation. The salt has thus one unique classical N+-H...(NCS)(-) hydrogen bond but also has six other weaker interactions: four C-H...S, one C-H...N, and one C-H...C(pi). The nature of all these interactions has been examined topologically using Bader's quantum theory of "atoms in molecules" and all eight of the Koch-Popelier criteria. The experimental and theoretical approaches agree well and both show that the inter-ion interactions, even in this simplest of systems, play an integrated and complex role in the packing of the ions in the crystal. Electrostatic potential maps are derived from experimental charge densities. This is the first time such a system has been examined in detail by these methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call