Abstract

Polymers with excellent comprehensive performance toward enhanced stability and mechanical strength are attractive for matrix loading of tunable porous and inherently brittle metal−organic frameworks (MOFs). Polyethersulfone (PES) with high mechanical strength (elastic modulus = ~2.6 GPa) is one of the best polymeric materials widely applied in gas and liquid separations but hindered by its ability to adhere to MOFs surface. The combination of the interface width, porosity, atomic density, and hydrogen bonding number and strength strongly influences MOFs/PES compatibility. ZIF-8 is one of the most frequently investigated MOFs, and exhibits excellent interface compatibility with PES, which is confirmed by both computational and experimental analyses. The desired porosity and adsorption properties of ZIF-8 are retained in ZIF-8/PES composites. This study sheds light on the theoretical understanding and characterization of hybrid material systems with diverse differences between brittle MOFs and stiff polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.