Abstract

Two-dimensional nanomaterials, such as graphene and hexagonal boron nitride nanosheets, have attracted tremendous interest in the research community and as a starting point for the development of nanotechnology. Using classical applied mathematical modeling, we derive explicit analytical expressions to determine the binding energies of noble metals, including copper, silver, gold, platinum and iridium (Cu, Ag, Au, Pt and Ir) atoms, on graphene and hexagonal boron nitride nanosheets. We adopt the 6–12 Lennard–Jones potential function, together with the continuous approach, to determine the preferred minimum energy position of an offset metal atom above the surface of the graphene and hexagonal boron nitride nanosheets. The main results of this study are analytical expressions of the interaction energies, which we then utilize to report the mechanism of adsorption of the metal atoms on graphene and hexagonal boron nitride surfaces. The results show that the minimum binding energy occured when Cu, Ag, Au, Pt and Ir were set at perpendicular distances in the region from 3.302 Å to 3.683 Å above the nanosheet surface, which correspond to adsorption energies in the region ranging from 0.842 to 2.978 (kcal/mol). Our results might assist in providing information on the interaction energies between the metal atoms and the two-dimensional nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.