Abstract

The blood oxygen level dependent (BOLD) fMRI signal is influenced not only by neuronal activity but also by fluctuations in physiological signals, including respiration, arterial CO2 and heart rate/ heart rate variability (HR/HRV). Even spontaneous physiological signal fluctuations have been shown to influence the BOLD fMRI signal in a regionally specific manner. Consequently, estimates of functional connectivity between different brain regions, performed when the subject is at rest, may be confounded by the effects of physiological signal fluctuations. In addition, resting functional connectivity has been shown to vary with respect to time (dynamic functional connectivity - DFC), with the sources of this variation not fully elucidated. The effect of physiological factors on dynamic (time-varying) resting-state functional connectivity has not been studied extensively, to our knowledge. In our previous study, we investigated the effect of heart rate (HR) and end-tidal CO2 (PETCO2) on the time-varying network degree of three well-described RSNs (DMN, SMN and Visual Network) using mask-based and seed-based analysis, and we identified brain-heart interactions which were more pronounced in specific frequency bands. Here, we extend this work, by estimating DFC and its corresponding network degree for the RSNs, employing a data-driven approach to extract the RSNs (low-and high-dimensional Independent Component Analysis (ICA)), which we subsequently correlate with the characteristics of simultaneously collected physiological signals. The results confirm that physiological signals have a modulatory effect on resting-state, fMRI-based DFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.