Abstract

This article describes design and analysis of a novel reversible diaphragm using shape memory polymer. The reversible diaphragm could be applied to space engineering, such as propellant tank of rocket. The shape memory polymer diaphragm can automatically recover to the initial state after the overturning deformation and thus can be used repeatedly. A three-dimensional model is established to study the overturning and recovery behavior of the shape memory polymer diaphragm.The nonlinear finite element method based on the thermodynamic constitutive equations of shape memory polymer is used to obtain pressure -displacement relations and strain energy variation of SMP diaphragm with approximately hemispherical shape in the whole process of the overturning deformation. The influence of structural parameters and temperature on the overturning and recover behavior is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call