Abstract
A thorough understanding of inner ear anatomy is important for investigators. However, investigation of the mouse inner ear is difficult due to the limitations of imaging techniques. X-ray phase contrast tomography increases contrast 100-1,000 times compared with conventional X-ray imaging. This study aimed to investigate inner ear anatomy in a fresh post-mortem mouse using X-ray phase contrast tomography and to provide a comprehensive atlas of microstructures with less tissue deformation. All experiments were performed in accordance with our institution's guidelines on the care and use of laboratory animals. A fresh mouse cadaver was scanned immediately after sacrifice using an inline phase contrast tomography system. Slice images were reconstructed using a filtered back-projection (FBP) algorithm. Standardized axial and coronal planes were adjusted with a multi-planar reconstruction method. Some three-dimensional (3D) objects were reconstructed by surface rendering. The characteristic features of microstructures, including otoconia masses of the saccular and utricular maculae, superior and inferior macula cribrosae, single canal, modiolus, and osseous spiral lamina, were described in detail. Spatial positions and relationships of the vestibular structures were exhibited in 3D views. This study investigated mouse inner ear anatomy and provided a standardized presentation of microstructures. In particular, otoconia masses were visualized in their natural status without contrast for the first time. The comprehensive anatomy atlas presented in this study provides an excellent reference for morphology studies of the inner ear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.