Abstract

ABSTRACTThe structural properties of Si/SiGe quantum wires, which were grown by local solid source molecular beam epitaxy through a Si3N4/SiO2 wire-like shadow mask, were investigated by means of high resolution x-ray coplanar and x-ray grazing incidence diffraction, as well as by transmission electron microscopy. High resolution x-ray coplanar diffraction was used to obtain the average in-plane strain in Si/SiGe wires before and after removing the Si3N4/SiO2 shadow mask. x-ray grazing incidence diffraction measurements were performed to obtain information on the shape of the wires and on the depth-dependent strain relaxation. A finite element method was used to calculate the strain distribution in the Si/SiGe wires and in the Si substrate which clearly show the influence of the Si3N4/SiO2 shadow masks on the strain status of the Si/SiGe wires in agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.