Abstract

Products from aluminum-magnesium alloy were produced by electron-beam additive technology. In this work, the microstructure and mechanical properties of the entire height of the grown product were investigated. The study of the microstructure showed that the grown sample has inhomogeneities and microdefects. At the bottom area a large number of β-phase intermetallic compounds of the MgAl system were appearing and at the top area the amount of intermetallic compounds was noticeably less, but a large amount of pores was observed. Mechanical properties were determined by compression testing. The results of mechanical tests indicate that the highest strength of the material is observed in samples cut out near the substrate.Products from aluminum-magnesium alloy were produced by electron-beam additive technology. In this work, the microstructure and mechanical properties of the entire height of the grown product were investigated. The study of the microstructure showed that the grown sample has inhomogeneities and microdefects. At the bottom area a large number of β-phase intermetallic compounds of the MgAl system were appearing and at the top area the amount of intermetallic compounds was noticeably less, but a large amount of pores was observed. Mechanical properties were determined by compression testing. The results of mechanical tests indicate that the highest strength of the material is observed in samples cut out near the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call