Abstract
Infiltration is a potential method to improve the performance of SOFCs. The purpose of this study is to investigate the effects of infiltration via multi-physics simulation tools with realistic microstructure properties. The physics-based simulation tool is developed to extract the properties of fuel cells based on the measured polarization curves and impedance behavior for different fuel/air utilization cases, which has been verified in our previous work. Furthermore, we incorporate the microstructure properties distribution within the electrodes of realistic SOFC. These structural properties are either obtained from experiments (e.g. volume fraction) or calculated based on percolation theory (e.g. interface area, length of triple phase boundary, etc.). In this study, we apply the previously developed simulation tool to analyze both the baseline button cell and the one with infiltrated cathode. The performances of both cells are predicted with the multi-physics numerical simulation and compared against experimental data. In addition, the performances of baseline cell and cathode-infiltrated cell with working loads are predicted. Finally, the properties of both cells are extracted and compared to show the effects of infiltration. The results will help us better understand and improve the infiltration processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.