Abstract

The morphological, physical and mechanical properties of polypropylene/clay nanocomposites (PPCNs) were prepared by in situ polymerization are investigated. Non-modified scmectite type clay (e.g. bentonite) was used to prepare bi-supported Ziegler–Natta catalyst of TiCl 4/Mg(OEt) 2/clay. Exfoliated PPCNs were obtained by in situ intercalative polymerization of propylene using produced bi-supported catalyst. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) micrograph were used to assess the clay morphology and dispersion of clay. The crystalline structures of PPCNs were characterized by differential scanning calorimetry (DSC). The mechanical properties of PPCNs were studied by tensile and impact tests. thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis DMTA were used to characterize the thermal and dynamic mechanical properties, respectively. The thermo-mechanical properties of prepared nanocomposites were considerably improved by introducing small amount of clay, which indicated that the clay most be significantly intercalated or exfoliated in the prepared nanocomposite preparation process. In addition, morphology and some of the mechanical and thermal properties of in situ PPCNs were compared with those of PPCNs prepared by melt blending method in this study and some presented reported results in literatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.