Abstract

In this paper, we describe the behavior of impurity transport in the HL-2A electron cyclotron resonance heating (ECRH) L-mode plasma. The neon as a trace impurity is injected by the supersonic molecular beam injection (SMBI) technique, which is used for the first time to study the impurity transport in HL-2A. The progression of neon ions is monitored by the soft X-ray camera and bolometer arrays with good temporal and spatial resolutions. The convection and diffusion process of the neon ions are investigated with the one-dimensional impurity transport code STRAHL. The results show that the diffusion coefficient D of neon ions is a factor of four larger than the neoclassical value in the central region. The value of D is larger in the outer region of the plasma (ρ > 0.6) than in the central region of the plasma (ρ < 0.6). The convective velocity directs inwards with a value of ∼ −1.0 m/s in the Ohmic discharge, but it reverses to direct outwards with a value of ∼ 8.0 m/s in the outer region of the plasma when ECRH is applied. The result indicates that the impurity transport is strongly enhanced with ECRH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.